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Abstract—This paper describes the use of an expert system, written with inexpensive shells (CLIPS and
EXSHELL) for running on personal computers (PCs), to assist in selecting complex petroleum recovery
processes. CLIPS is a forward-chaining rule-based system written in C, with rules entered in a LISP-like
format. EXSHELL is a backward-chaining rule-based system written in PROLOG. These shells were used
to write a system, an expert assistant, for use by petroleum engineers to screen candidate processes for
enhanced oil recovery (EOR). The final choice is always made on the basis of economic evaluations.
Testing has shown that the expert assistant greatly reduces the amount of work involved in making this
choice.

Rather than doing exhaustive economic calculations for all possible processes, the work is reduced to
an economic comparison between the two or three most promising candidates. Rather than having to glean
information and data from graphs or charts in technical papers, the user and the system work interactively
to obtain the needed information. The system automatically selects the optimal paths to the solutions and
is easily updated as new data on recovery processes become available. This paper also demonstrates the
utility and power of these inexpensive shells, compares the approach used by each, and demonstrates the
relative advantages of data-driven vs goal-driven search for this screening problem.

Key words: Expert systems, Enhanced oil recovery.

INTRODUCTION

Reasons for studying enhanced oil recovery (EOR) are listed in a 1986 paper by Stosur [1].
When he wrote his paper, only 27% of the oil ever discovered in the US had been produced.
About 6% more will be produced using existing technology under current economic conditions.
This leaves the remaining 67% as a target for EOR. Currently, only about 6% of our daily oil
production comes from EOR. These numbers indicate, even in times of reduced awareness of
energy crisis, that the study of EOR methods is rewarding because of the high potential pay
off.

Because EOR can be very costly, engineers must pick the best EOR recovery method for the
reservoir in question to optimize profit, or indeed, to make any profit at all. The entire screening
method is expensive and involves many steps. The first step in the traditional approach is to consult
the technical guides. Screening guides consist of a table or several charts that list the rules of thumb
for picking the proper EOR technique. These techniques are usually a function of reservoir and
crude oil properties. The candidate techniques are often subjected to laboratory flow studies. Data
from these studies are then used to demonstrate the viability of the selected technique. Economic
evaluations are carried out throughout the screening process.

Our expert assistant was developed to automate this screening process. It provides the same
information as the old table and graph method, but it is more comprehensive than the tables and
easier to use than the graphs. It provides the user with a weighted list of potential techniques at
the end of the session. This is often quite difficult to do with the traditional table method. The expert
assistant is easy to use in that it asks all the questions and leads the user through the first stages
of the screening process. It is always understood that the final choice of technique will be based
upon economics; therefore the first screening steps are quite important, both because of the high
cost of the entire screening process as well as the absolute necessity of choosing the most economical
EOR technique.
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Since an important prerequisite for our expert assistant was to make it easily available to several
users, we employed inexpensive expert system shells designed to run in a PC environment. It was
then a simple matter for users to request a floppy disc containing the shell and the expert system.
With a few instructions, they can be “in business” interacting with our expert advisor.

THE PC-BASED EXPERT SYSTEM SHELLS

We found two inexpensive PC-based shells that were adequate for our expert assistant: CLIPS
[2] and EXSHELL ([3].

CLIPS, developed by NASA, is a forward-chaining, rule-based shell written in the C program-
ming language; it emulates in many ways the LISP language. To program with the CLIPS shell,
it is helpful, though not essential, to know both C and LISP. EXSHELL was developed by the
University of New Mexico Computer Science Department [3]. It is a backward-chaining, rule-based
shell written in the PROLOG programming language. One must know some PROLOG in order
to program with EXSHELL. Using either expert assistant, however, requires no programming
skills and only a few instructions.

Both of these shells are valuable tools, even though they have different features. Because our
comparisons of the shells and the programs may be useful to other investigators in the future, we
have included a section on program comparisons.

Even though our expert assistant is small compared with some, it does use over 300 rules. Both
shells handle this expert system application easily, and it appears that they will continue to do so
as new rules are added in the future.

THE EOR SCREENING PROBLEM

For this study we define EOR as any technique that goes beyond water flooding or gas recycling
to increase oil well production. We include the injection of material not usually found in the
reservoir. The program we have developed relies mainly on the work of Taber and Martin [4] and
Goodlet et al. [5,6] for its rules.

Enhanced oil recovery techniques can be divided into four general categories: thermal, gas
injection, chemical flooding and microbial. Thermal techniques are subdivided into in situ
combustion and steam flooding. To be technically and economically feasible, thermal techniques
usually require reservoirs with fairly high permeability. Steam flooding is traditionally the most
used EOR method in the US, and is most often applied to relatively shallow reservoirs containing
viscous oils. Recently, however, studies and field tests indicate that steam injection methods are
attractive in deeper reservoirs containing lighter, less viscous oils. New studies also point out that
steam temperatures affect other reservoir and oil properties, in addition to viscosity. The expert
system technology, with its traditional modularity of rules, is excellent for use in this situation
because we can easily change the program and add new rules to reflect new changes in the oil
recovery technology.

Miscible gas injection techniques are, in a sense, the opposite extreme to steam flooding. To be
feasible, the reservoirs must have considerable depth so that the process pressure is adequate for
achieving miscibility between a displacing fluid and the displaced fluid. Miscible gas injection
techniques are divided into hydrocarbon, nitrogen and flue gas and carbon dioxide. As with steam
flooding, there have been a number of recent developments in the technology for immiscible gas
flooding. As these developments become available it is easy to change our rule base to reflect the
new knowledge.

Chemical flooding has a much less restricted set of conditions for use and is divided into polymer,
surfactant-polymer and alkaline recovery techniques. Reservoir permeability poses some restric-
tions on chemical flooding, but more often, characteristics affecting chemical stability, such as
temperature, formation brine and rock composition are the limiting parameters.

Microbial techniques, which are relatively new and primarily experimental, are included for
completeness. The microbial category is not subdivided. Figure 1 presents these categories and their
associated EOR methods; these choices make up the search tree for the expert assistant.
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MICROBIAL

SURFACTANT/
POLYMER

NITROGEN
STEAM
FLOODING
CARBON
DIOXIDE

Fig. 1. Search tree for the expert assistant.

We often hear the comment: “We have excellent papers on this subject with graphs and tables
and information to help us solve the problem. Why do we need an expert system?”. The answer
is that you can solve the problem more quickly, and often better, with the expert system. Table 1
is taken directly from Ref. [4]. This table presents a matrix of eight EOR techniques and nine EOR
criteria.

Theoretically, engineers who know the values of these EOR criteria for the reservoir in question
should be able to pick some candidate processes by just using Table 1; thus, it might seem that
they do not need to know very much about EOR techniques themselves. We now present several
examples that show some of the problems with this argument and approach to the problem. For
the first example we use the following EOR criteria with Table 1:

(1) gravity = 18° API,

(2) viscosity = 500 cP,

(3) composition = high-percentage C,~C,,
(4) oil saturation = 50%,

(5) formation type = sandstone,

(6) payzone thickness = 35 ft,

(7) average permeability = 1000 mD,

(8) well depth = 2000 ft,

(9) temperature = 110° F.

If we search the table starting at the top, and move left-to-right, before moving down
a row. we are using the backward-chaining or goal-driven method. That is, we are first
assuming a solution, e.g. hydrocarbon gas-injection, and then checking the data either to verify
or disprove that assumption. A data-driven, or forward-chaining, approach would begin the
search in the upper-left-hand corner of the table and would move down row-by-row to the
bottom, before moving to the next column. That is, the search would start with the value of
the oil gravity and check it against every EOR method before moving on to the other
data.

In our first example, we use backward-chaining to find that steam flooding is the only good
method to use for this situation. The results of this search are shown in Fig. 2. Although in situ
combustion techniques might also work, it is not perfectly clear what is meant, in Table 1, by
“greater than 150° F preferred.” This situation is not ideal because we have only one candidate
for the next screeing step. Furthermore, if this one candidate were eliminated for other reasons in
later screening, we would have no candidate recovery methods for this case. Having a well that
is not recommended for EOR is certainly legitimate, but we shouldn’t eliminate the possibility

because of too little knowledge.
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Ol |Formation| Net J Average

Gas Injection Methods | Gravity | Viscostty| Composition | Saturation| ~Type | Thicknesd Permeability |Depth| Temperature
Hydrocarbon no -
Nitrogen & Flue Gas no >
Carbon Dioxide no >
Chemical Flooding
Surfactant/Polymer no >
Polymer no >
Alkaline yes no >
Thermal
Combustion yes yes yes yes yes yes yes yes no
Steam Flooding yes yes NC yes yes yes yes yes NC

NC = not critical
Fig. 2. Solution to example problem 1.

If we change our example just a little, we can produce the opposite problem. Our second example
has the following values for the EOR criteria:

(1) gravity = 35° API,

(2) viscosity = 10cP,

(3) composition = high percentages C,~C, and some organic acids,
(4) oil saturation = 50%,

(5) formation type = sandstone,

(6) payzone thickness = 10 ft,

(7) Average permeability = 1000 mD,

(8) well depth = 5000 ft,

(9) temperature = 150° F.

If we search Table 1 again with a backward-chaining technique, we obtain the results shown in
Fig. 3. This time only one potential EOR method is eliminated, that is, steam flooding. In this
example, we might go to our second step with too many candidates.

This is not a criticism of Ref. [4] or tables similar to Table 1. In fact, for every case like the
examples above, there are several that will fall in between these extremes. It is merely an effort to

Oll |Formatlon|  Net J Average
Gas Injection Methods | Gravity | Viscosity| Composition Saturation| Type |Thicknesg Permeabliity|Depth| Temperature
Hydrocarbon yes | yes ok yes | yes ok NC |yes| NC
Nitrogen & Flue Gas | yes | yes ok yes | yes ok NC |yes| NC
Carbon Dioxide yes | yes ok yes | yes ok NC |yes| NC
Chemical Flooding
Surfactant/Polymer yes | yes ok yes yes yes yes yes yes
Polymer yes | yes NC yes yes NC yes |yes yes
Alkaline yes | yes ok yes | yes NC yes |yes| yes
Thermal
Combustion yes | yes ok yes | yes yes yes |[yes| NC
Steam Flooding no -

NC = not critical
Fig. 3. Solution to example problem 2.
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point out that we will often need more information than is available in these tables to do adequate
screening.

Much of this needed information is available in Refs [4-6]. References [5] and [6] also have tables
similar to Table 1. Table 2 contains all of the material from Table 1 and some information from
the table in Ref. [6]. It also includes another EOR method, microbial drive. Although this helps
improve the results of our search, we still do not have enough information. We need information
that will tell us the impact of using a well temperature of 110° F when a temperature “greater than
150°F is preferred.” We need information that will help us rank two or more methods when they
all fall within the acceptable range. What we need from this screening step is a ranked list of
methods.

A ranked list can be obtained by a nonexpert simply by reading the papers and perhaps
making a short literature search, in addition to using Tables 1 or 2. When such work is
necessary, the time invested by the nonexpert is not just the few minutes required to search the
tables. If the exercise has to be repeated several times or by several different nonexperts, a small
PC-based expert system can be easily justified to guarantee that the search process is both
comprehensive and easy.

Figures 4-14 demonstrate the basis of our scoring system for the various EOR criteria and EOR
methods. Figures 5, 11 and 12 were taken from Ref. [4] and modified. The others were created
by studying Refs [4-9]. Figures 4-14 are bar graphs showing the relative influence of each EOR
criterion on each EOR method. Our scoring system is empirical and is designed to add some of
our own judgment or expertise to the expert system. The system is based on the key words in
Figs 4-14 and works as follows:

Not Feasible = —50, Fair=6,
Very Poor = —20, Good = 10,
Poor =0, Not critical =12,
Possible =4, Preferred = 15.

As can be noted, our scoring is ad hoc, but designed to implement our own experience in EOR
method selection. Our range of possible usable methods is from —20, Very Poor, to +20. No
recommendation is absolutely perfect, and Preferred is our highest recommendation at 15. At the
other extreme, for some situations a method may simply be Not Feasible and given a rank of —50.
In this situation we wanted no combination of other features to bring it into an acceptable range.
Note also that in our metric, Not Critical is a very good situation to have.

With the microbial drive method the effects of viscosity and, to a large extent porosity, are
unknown. Until we have more information we are assigning a grade of 6 for an Unknown, the same
as that assigned to Fair.

As an example of the scoring system, consider Fig. 5, an oil with a viscosity of about 500 cP.
The hydrocarbon gas injection, surfactant-polymer and alkaline chemical flood techniques are all

0 20 40 slo alo 100
l

Hydrocarbon Miscible poor | good preferred
Nitrogen & Flue Gas poor . preferred
Carbon Dioxide possible** | fair good
Surfactant/Polymer poor preferred
Polymer Flooding poor preferred
Alkaline Flooding poort | preferred | fair
In situ Combustion | fair | pref. | fair | poor
Steam Flooding fair | pref. poor
Microbial Drive poor I good

* Minimum prefarred, 24 for flue gas and 35 for nitrogen.
=+ possible ImMiscible gas displacement.
1 No organic acids are present at this gravity.

Fig. 4. Oil gravity screening data (*API).
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Fig. 6. Oil composition screening data.
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0.1 1.0 1lo 1({)0 10?0 10,?00 100,000
Hydrocarbon Miscible | pref. | good l fair I poor
Nitrogen & Flue Gas good | fair I poor
Carbon Dioxide pref. | good I fair poor
Surfactant/Polymer good | fair poor not feasible
Polymer Flooding fair I preferred poorl not feasible
Alkaline Flooding good l fair | poor I not feasible
In situ Combustion poor | good l not feasible
Steam Flooding poor | fair I good I fair
Microbial Drive unknown
Fig. 5. Oil viscosity screening data (cP).
g Bk oG QR o,
Hydrocarbon Miscible | preferred | good fair NC NC
Nitrogen & Flue Gas good | preferred fair NC NC
Carbon Dioxide fair fair preferred NC NC
Surfactant/Polymer fair fair preferred NC NC
Polymer Flooding NC NC NC NC NC
Alkaline Flooding NC NC NC | preferred NC
In situ Combustion NC NC NC NC preferred
Steam Flooding NC NC NC NC NC
Microbial Drive NC NC NC NC NC
NC = not critical

10 1?0 1,(:00 10.?00 100,000 1,000,000

Hydrocarbon Miscible not critical l
Nitrogen & Flue Gas not critical

Carbon Dioxide not critical
Surfactant/Polymer preferred G| fair poor
Polymer Flooding preferred G| fair poor
Alkaline Flooding preferred | good | fair poor
In-situ Combustion not critical

Steam Flooding not critical

Microbial Drive preferred ] G l fair I poor

G = good

Fig. 7. Formation salinity screening data (ppm).

Poor and all score zeros. The other two gas injection techniques, nitrogen/flue gas and carbon
dioxide, are both Fair and each gets a score of six. The polymer flooding technique cannot be used
with a viscosity this high, so it gets a —50 for Not Feasible. Both thermal techniques are Good
and both get 10s. The microbial drive method has an Unknown and gets a six.

Some EOR criteria carry more weight than others, and in some cases, a given criterion may affect
one method more than another. In the program, the above scores are adjusted slightly to reflect
these differences. The relative scoring and the adjustments to these scores are made on the basis
of experience and judgment. They were also influenced by a study of more than 200 enhanced oil
recovery projects listed in Ref. [9]. These scores are explicitly listed in the computer program an

dR. L et .
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0 2lo 4? 6|0 80 100

Hydrocarbon Miscible poor good preferred*
Nitrogen & Flue Gas poor good
Carbon Dioxide poor good
Surfactant/Polymer poor preferred [ possible
Polymer Flooding poorlpossibl4 fair I preferred*
Alkaline Flooding above waterflood residual
In situ Combustion poor fair good preferred*
Steam Flooding poor fair good preferred*
Microbial Drive not critical

* Preferred status is based on the starting residual oil saturations of successfully
producing wells as documented by Ref. 9.

Fig. 8. Oil saturation screening data (%PV).

Sand ! | Hgmpaeas  Misupietes, Mpgagenie:. RIS
Hydrocarbon Miscible| good good poor good poor
Nitrogen & Flue Gas good good poor good poor
Carbon Dioxide good good poor good poor
Surfactant/Polymer | preferred | preferred | poor good poor
Polymer Flooding preferred | preferred | good fair poor
Alkaline Flooding poor | preferred fair  |not feasible[not feasible
In situ Combustion good good good good fair
Steam Flooding good good fair good fair
Microbial Drive good good poor good poor

Fig. 9. Formation type screening data.

0 25 50 75 80 >100

] 1 ]

Hydrocarbon Miscible |preferred thin unless dipping
Nitrogen & Flue Gas |preferred thin unless dipping
Carbon Dioxide preferred thin unless dipping
SurfactantPolymer  [poor] preferred | good
Polymer Flooding not critical

Alkaline Flooding not critical

In Situ Combustion  [fair | good | fair
Steam Flooding poor | fair| preferred | good
Microbial Drive not critical

Fig. 10. Net thickness screening data (ft).

thus may easily be changed by someone whose experiences differ from ours or who might have
new information.

An important task of the expert system is to give the user meaningful advice about the individual
EOR methods, based on the raw scores computed by the program. For the CLIPS programs, we
designed a system that produces numbers similar to the confidence factors found in many shells,
including EXSHELL. The scores are based on a maximum possible best score of 100%. The best
possible process is steam flooding. That is, if all methods were to receive their best possible score,
steam flooding would get the highest, with 148 points because it has the most “preferred” ratings
in Figs 4-14. The other EOR methods, with the exception of the microbial drive, are all quite close.
The raw score of 148 corresponds to 100%. All raw scores are divided by 148 to produce their

relative confidence factors.
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0.1 1.0 10 100 1,0]00 10,000
| J

Hydrocarbon Miscible preferred good
Nitrogen & Flue Gas not critical if uniform

Carbon Dioxide high enough for good injection rates
Surfactant/Polymer poor fair preferred
Polymer Flooding poor _ |possible| fair | preferred [ tair
Alkaline Flooding poor fair preferred

In Situ Combustion poor [fair| preferred
Steam Flooding poor [ fair | preferred
Microbial Drive poor | good

Fig. 11. Permeability screening data (mD).

0 2,000 4|.ooo 8'1000 a.c»loo 10,000
Hydrocarbon Miscible| poor fair good
Nitrogen & Flue Gas poor fair preferred
Carbon Dioxide poor pouuol preferred
Surfactant/Polymer preferred poor
Polymer Flooding preferred poor
Alkaline Flooding preferred poor
In situ Combustion  |N P| good
Steam Flooding P| preferred l possible I poor
Microbial Drive good l poor

P =possible N = not feasible
Fig. 12. Well depth screening data (f1).

0 1?0 2?0 300 400 500
Hydrocarbon Miscible not c:riticall :
Nitrogen & Flue Gas good I better
Carbon Dioxide not critical
SurfactantPolymer  |preferred| good | poor not feasible
Polymer Flooding preferred | good | poor not feasible
Alkaline Flooding good fair poor
In situ Combustion poor | good | preferred
Steam Flooding not critical
Microbial Drive good I not feasible

Fig. 13. Formation temperature screening data (°F).

At the end of a session, the scores are tallied, and the user has a ranked list of candidates o
take to the next screening step. So far, this approach has given realistic results ‘We have run these
expert systems with much of the information given in Ref. [9] for actual EOi’; projects. In about
60% of the cases run, the method ranked highest by the expert system agreed with the actual
method used for that project. In nearly all of the rest of the cases, the act%ml method used W&
ranked in the top three by the expert system. In no case was the m::lhod used significantly bettér
than ours, i.e. the top recommended methods were roughly equivalent g

Our success is not surprising because these data did influence the s;corcs used by the expert
system. An important aspect of the expert system’s design methodology is to keep comparing
the results of the expert system with the results given by the human ex gr)tr nd continue modify:
ing the system until it reflects the same skill level as that of the hur‘r:;n Sea erts. This develop
ment process of continued refinement gives us confidence in the results pr:ci)icleci by our exper
system.

e
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0 1|0 2? 3? 4Io 50
Hydrocarbon Miscible | poor not critical
Nitrogen & Flue Gas | poor not critical
Carbon Dioxide poor| not critical
Surfactant/Polymer poor fair good
Polymer Flooding poor fair goodl preferred
Alkaline Flooding poor possible preferred
In situ Combustion poor possible goodl preferred
Steam Flooding poor possible good | preferred
Microbial Drive poor | unknown

Fig. 14. Formation porosity screening data (%).

Our first program CLIPS is data-driven or forward-chaining. The backward-chaining technique
works well when using the data given in Tables 1 and 2. For this reason we developed the second
expert assistant in backward-chaining mode with EXSHELL. These techniques are discussed in the
next section.

THE EXPERT ASSISTANTS: HOW THEY WORK

Our first EOR expert assistant, written with CLIPS, is forward-chaining. In the forward-chaining
or data-driven approach, the engineer lets the data help guide the way through the search space.
The system asks questions until it determines which node in the search tree to move to next. The
CLIPS search, described in the previous section, works in this manner. The CLIPS software can
also be programmed to back-chain, but this we found more difficult; our final example takes this
approach.

Data-driven search first finds an acceptable EOR category from the list: chemical flooding, gas
injection, thermal or microbial. This is accomplished by asking for the values of the three EOR
criteria that best delineate the categories (permeability, well depth and viscosity). A category score
is computed based on the category scores represented in Figs 5, 11 and 12. If the category score
is less than an earlier determined threshold value, the entire category is eliminated from further
consideration.

The program then goes to the first acceptable category and tries to eliminate individual methods
with questions about oil temperature, gravity and composition. Then the category methods are
individually scored. Scores that are less than a second predetermined threshold are eliminated from
further consideration. If any of the category methods are not eliminated, the program asks
questions about the salinity and the remaining reservoir properties and scores these methods
further.

The program checks to see if there are any more acceptable categories to investigate. If there
are, it repeats the process just described. If there are not, it stops and prints the scores of the
remaining candidate methods. A flow diagram for this version of the expert assistant is given in
Fig. 15,

The backward-chaining expert assistant was written with EXSHELL. If an engineer is solving
the EOR screening problem by hand using the backward-chaining or goal-driven method, he or
she first picks a goal, for example the hydrocarbon gas injection method, from the left-hand side
of Tables 1 and 2. The engineer then picks a subgoal that must be met before the original goal
can be satisfied, for example the gas injection category. The engineer continues to pick subgoals
as long as necessary, but in our example, would stop at this point.

In goal-driven reasoning the engineer asks only those questions necessary to determine whether
gas injection is a feasible category. If it is feasible, he or she then asks only those questions necessary
to determine whether the subgoal, the hydrocarbon method is feasible; if it is not feasible, another
goal is picked. If it is feasible, the problem is solved, unless more than one solution is desired. In

this case, another goal is picked and the process continues.
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The PROLOG based EXSHELL works in this way, offering a goal-driven approach to
solving the problems. EXSHELL uses Tables 2, with several modifications from Figs 4-14.
This approach first assumes that hydrocarbon injection is going to work. For hydrocarbon
injection, the category of gas injection must be applicable. For gas injection to be applicable,
both the oil property data and the reservoir characteristic data must fall within the limits of
Table 2.

The program starts by trying to verify these subgoals. It asks questions about gravity, viscosity,
oil composition, etc. and continues until the final goal is met or until an assumption is rejected.
When an assumption is rejected, that branch of the search tree is pruned. The program then moves
to the next unpruned branch to the right and picks that EOR process as a goal and continues until
a solution is found. In this case, since we want a ranked list of candidate EOR methods, the
program continues to search the tree until all possible solutions are found. When the search is
finished, the solutions are printed with a confidence factor for each process. The confidence factors
give a ranking to each candidate. These rankings are similar, but not identical to, the rankings in
the first program.

Figure 16 presents the and /or graph searched by the EXSHELL version of the expert assistant.
It is called an and/or graph because the options or branches connected by an arc are and branches,
that is. all of them must be true before the branch is resolved. The other branches (not connected
by an arc) are or branches; these require the solution of only a single option or branch for
resolution.

An important feature of EXSHELL is that it has an explanation facility [3]. Users may ask
“why™ to any query and EXSHELL responds by presenting the rule it is currently using to try

[ Permeability? J

r Well-depth? J
Y
[ viscosty? |
—-—-—'—'_'_‘"‘—-—-—L
|

Pick a category I

Qil-temp?
Qil-gravity?
il-composition?

Is there another
acceptable
category?

Are all EOR
method scores
high enough in this
category to
continue?

yes

Payzone thickness?
no Formation?
Porosity?

Salinity?

Fig. 15. Flow diagram for the CLIPS forward-chaining version of the problem.
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to resolve that particular query. Users may also ask “how” when they want to know how
EXSHELL obtained a particular piece of information. EXSHELL then presents the branch of the
tree (with the list of rules) that led to that fact.

When the final solution is found, EXSHELL asks the user whether they want to trace the
solution process. If they do, EXSHELL gives the entire set of rules (called the proof tree)
that led to the solution. One problem with the current version of EXSHELL is that it’s
simple certainty factor algebra, modeled after that used in MYCIN [3], does not capture, as
well as the CLIPS version does, the numeric scores associated with the “goodness” of the EOR
criterion for each EOR method, as described in Figs 4-14. This problem is discussed further in
the next section.

Based on our experience we feel that the expert assistant is easier to write when it is done in
the goal-driven or backward-chaining mode. For this reason, we wanted a backward-chaining
method that handled the relative scores as well as the first CLIPS version did. We had the choice
of working more with EXSHELL or continuing with CLIPS. We chose to work with CLIPS and
forced it into the backward-chaining mode; we also used the minimal scores, obtained from Figs
4-14, to eliminate the unlikely candidate methods.

This final version of our expert assistant works much like the EXSHELL version, except for the
scoring. Figure 17 is a portion of the search space for the problem, presented in and/or graph form.
We have also added a simple explanation facility. At the end of the session, the user can ask why
a given EOR method was eliminated from consideration, and the program explains which set of
EOR criteria values caused the score to drop below the threshold, and therefore caused that
candidate method to be eliminated. An example session with this program is presented in the
Appendix.

find-method (advice)

/O\

method (y) use (y, advice)
method (hydrocarbon- method (nitrogen-fg- method (carbon-dioxide method (surfactant-
Injection) Injectlon) Injection) polymer-flooding)
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Fig. 16. And/or graph for a portion of the search space for the EXSHELL version of the EOR screening
expert assistant.
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Fig. 17. And/or graph for a portion of the search space for the CLIPS backward chaining version of the
problem.

PROGRAM COMPARISONS AND SUMMARY

For the EOR problem, the forward-chaining version of the expert assistant was very difficult to
write. This will not always be the case. Expert system problems are often diverse, each requiring
a different tool or a different approach for the optimal solution [3]. We have used CLIPS and the
forward-chaining approach with an expert control system and an advisor to help engineers pick
the best equation of state for a given problem [10,11]. In both of these cases we have been able
to prune the search tree easily and early. In both cases the categories were more clearly delineated.
With the EOR screening problem, it is sometimes, though not always, possible to eliminate all but
one EOR category with a few questions.

In our first attempt to work the EOR screening problem, we tried to write a system that
would eliminate all but one category early in the session. We used this approach because it has
worked so well for us in the past, that is, we had problems in which the data guided us easily
through the search tree. In trying to prune the tree to one category, we had to program in so many
contingencies that, quite often, we could not find the best category until we had found the best
method.

Another difference with the EOR screening problem is that we are trying to find a ranked list
of candidates as opposed to one solution. In Ref [11] we did produce a small ranked list with our
CLIPS program, but all candidates came from the same category. With the EOR problem the first
and second ranked candidates often come from different categories. We don’t have to find the
“best” path through the search tree, just all acceptable paths. In some instances this can reduce
the advantages a data-driven approach may have over the goal-driven approach.

Our first attempt at the forward-chaining approach was too cumbersome. Our second attempl,
ended with a program that did a forward-chaining exhaustive search and gave a score (0 every
method.

Writing our first backward-chaining program with EXSHELL was easy because we could
actually see how we were progressing with an individual method as the questions were being asked
When writing the backward-chaining approach, we gained better insights into the problem.
enabling us to go back to the forward-chaining approach and prune the tree. Our third effort
produced an expert system that worked as well as the human experts did in solving the problem
and produced answers as good as an exhaustive search program could. In the exhaustive search.
CLIPS contained over 300 rules and ran quite fast on a PC-386.
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Our EXSHELL version of this program was not without it's problems. For example, it deals
very well with questions such as “Is the formation thin and dipping? Yes or no.” But it has more
pmmewnhmmmomsmh%“wmnﬁmemeMWﬂhompwymnmusmwn&dmamwﬂ
a question like “Is the viscosity less than 157 then later answer the question, “Is the viscosity less
than 10?”. This makes the program a little awkward. Another problem is the scoring method. It
is easy for EXSHELL to handle probabilities or confidence factors but much more difficult for it
to handle a scoring system similar to the one described for the CLIPS versions. For this reason
we can lose some of the information in Figs 4-14. On the plus side, EXSHELL has an excellent
explanation facility that is built into the system.

EXSHELL is easier to program than CLIPS. CLIPS, on the other hand, is more flexible, putting
more program control in the user's hands. For this reason we were able to force CLIPS to do
backward-chaining. We were also able to write a simple explanation facility, but we did have to
program this in ourselves.

We have written three expert assistants that all help a user perform the first screening steps in
the selection of an EOR process. Each of these expert assistants is slightly different, but each gives
nearly the same results. We have tested them against data available from human experts and they
have performed well.
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APPENDIX

Sample Session with the Expert Assistant
We have chosen the backward-chaining version of the CLIPS expert assistant for the sample session below because we like

It best and have polished it the most.

The demonstration problem is based on the firs
Table 2. The salinity is 50,000 ppm and the porosity
Same solution we obtained in our sample session, W
“?"“ can be used is steam flooding. The expert assistant, however,
different candidate processes:

() steam flooding—score 89%,

(2) in situ combustion—score 85%,
(3) alkaline flooding—score 76%,
4) polymer flooding—score 73%,

(3) microbial drive—score 72%. gl e vudiinin g
This e : in which we used just Table 1. We get a ranked list of candidates instea
of just 0:: Talzlglzt')lves lhel ks earl::]rkg:'lol?;f!:; candidates. Our expert assistant allows methods such as in situ coTbustlon
10 be rankeq beéaﬁz-: (i,tr:rc::g: '?::ighls" for problems such as: “What does it mean to have a temperature of 110° F when

the tab) o F i " FORD v4lian] i
The s:;fgz gﬁ:!f}r,cltir;elrf‘;sgs:sa,ﬂr?:eg]eﬁexplanalory. We built some of the justifications into this program because
thia facility is not as sophisticated as the one in EXSHELL.

t sample problem in this paper, with two added conditions from
is 28%. Engineers using this information with Table 2 would get the
hich is shown in Fig. 2 and described in the text. The only method
produces, in order, the following ranked list of five
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